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Abstract
When software models change, developers often fail in keep-

ing them consistent. Automated support in repairing incon-

sistencies is widely addressed. Yet, merely enumerating re-

pairs for developers is not enough. A repair can as a side

effect cause new unexpected inconsistencies (negative) or

even fix other inconsistencies as well (positive). To make

matters worse, repairing negative side effects can in turn

cause further side effects. Current approaches do not detect

and track such side effects in depth, which can increase de-

velopers’ effort and time spent in repairing inconsistencies.

This paper presents an automated approach for detecting

and tracking the consequences of repairs, i.e. side effects.

It recursively explores in depth positive and negative side

effects and identifies paths and cycles of repairs. This pa-

per further ranks repairs based on side effect knowledge

so that developers may quickly find the relevant ones. Our

approach and its tool implementation have been empirically

assessed on 14 case studies from industry, academia, and

GitHub. Results show that both positive and negative side

effects occur frequently. A comparison with three versioned

models showed the usefulness of our ranking strategy based

on side effects. It showed that our approach’s top prioritized

repairs are those that developers would indeed choose. A

controlled experiment with 24 participants further highlights

the significant influence of side effects and of our ranking of

repairs on developers. Developers who received side effect

knowledge chose far more repairs with positive side effects

and far less with negative side effects, while being 12.3%

faster, in contrast to developers who did not receive side

effect knowledge.
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1 Introduction
Model-Driven Engineering (MDE) has shown to be effective

in the development and maintenance of large scale and em-

bedded systems [25, 43]. MDE typically puts models as a

central artifact in the various phases of the development

process [24, 57]. Indeed, models are used in all development

stages, from specifying the customer’s requirements, design,

all the way to source code, with the benefits of increased

productivity and reduced time to market [1, 6, 64]. These ben-

efits, however, hinge on the assumption that models remain

consistent during development which is a problem when

changes happen. Changes often do cause inconsistencies. If

these inconsistencies are not recognized in a timely man-

ner, then they cause subsequent errors. Moreover, if models

are inconsistent, all automation (e.g., analysis [5] or model

transformation [44]) using them is untrustworthy and likely

causes even more errors. Therefore, inconsistencies must

not only be detected but ultimately be repaired [12, 15, 64].

Detecting and repairing model inconsistencies is widely

addressed in the literature (e.g., [22, 38, 45, 47, 52, 53, 62, 66],

see related work section 6.). The existing approaches typi-

cally compute a set of repairs for each of the detected incon-

sistencies. Studies reported on the adoption of inconsistency

detection and repair in various industries, such as by Thales

a company in aeronautic, transport, and security [42], and

Van Hoecke Automation a company in the areas of produc-

tion automation and processing [12]. In this paper, we argue

that merely proposing repairs is not yet sufficient, and con-

sequences of repairs must be handled too. In addition to

fixing a given inconsistency, repairs can also cause side ef-
fects that software developers are not aware of (empirical

https://doi.org/10.1145/3357766.3359546
https://doi.org/10.1145/3357766.3359546
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evidence is given later in this paper). A side effect of a given

repair either can repair other inconsistencies (referred to

as a positive side effect) or can cause new inconsistencies

(referred to as a negative side effect). For example, with two

conflicting simple consistency rules (imagine they are about

the number of lectures a student can enroll in) CR1[l > 5]

and CR2[l < 15]. Repairing one inconsistency, e.g., of CR1
because l = 2, by changing l to l = 20, would cause an-

other inconsistency (of CR2) as a negative side effect. To

make matters worse, repairing a negative side effect can

in turn cause additional side effects, e.g., CR2 by changing

l = 20 to l = 4 which causes again CR1. This can lead to

a path and a cycle of repairs causing successive negative

side effects. A path is a sequence of repairs fixing their aris-

ing negative side effects. A cycle occurs when repairing a

negative side effect causes a previously repaired inconsis-

tency (i.e., a closed path), such as between CR1 and CR2.
Not considering side effects can unfortunately increase de-

velopers’ effort and time spent in repairing inconsistencies.

Furthermore, when repairs are computed they are typically

not ranked w.r.t. to the likelihood of usefulness to develop-

ers. To the best of our knowledge, no existing approach (e.g.,

[22, 38, 45, 47, 52, 53, 62, 66]) explored side effects in depth

nor ranked repairs based on the gained side effect knowl-

edge when repairing model inconsistencies. Thus, leaving

the burden of understanding and tracking the repairs con-

sequences to the developers. Our novel approach fills this

gap. Repairs causing side effects should not be filtered but

rather considered and must be explored incrementally. Thus,

guiding developers until the models are consistent.

Providing developers with information about side effects

is crucial. On the one hand, developers can prioritize repairs

with positive side effects, which reduces the repairing effort

(i.e., 1 repair for n inconsistencies). On the other hand, devel-

opers can avoid, and most importantly be aware of, repairs

with negative side effects and their possible paths and cycles.

Ultimately, we aim to guide developers for a more efficient

repairing process of inconsistencies. The novel contributions

of this paper w.r.t. the state of the art are as follows:

• First, we identify positive side effects for each com-

puted repair. This allows us to highlight to developers

repairs that fix many inconsistencies at once.

• Second, we identify negative side effects for each com-

puted repair. This allows us to warn developers about

repairs that cause additional inconsistencies. We also

explore the negative side effects recursively and thus

guiding developers step by step in repairing them.

• Third, we identify paths and cycles of repairs caused

by negative side effects. In so doing, we aim to prevent

developers from being trapped in a cycle of repairs

unknowingly.

• Fourth, we propose a ranking strategy of repairs based

on the gained knowledge of side effects. This aims

to rank repairs w.r.t. their likelihood of usefulness to

developers.

We have empirically evaluated the performance, feasibil-

ity, and usefulness of our approach on 14 case studies. The

evaluation results show that side effects not only exist but

are frequent, where 398 repairs caused 12166 side effects and

151 cycles. Our evaluation also showed the usefulness of our

ranking strategy as it correctly prioritized repairs that devel-

opers actually applied on our versionedmodels. Furthermore,

we conducted a controlled experiment with 24 participants

that highlighted a significant influence on developers when

provided with side effect knowledge. Developers with side

effect knowledge applied far more repairs with positive side

effects (30) and far less with negative side effects (8), while

being 12.3% faster. In contrast to developers without side

effect knowledge who chose far less repairs with positive

side effects (4) and far more with negative side effects (30).

2 Challenges and Motivation
To illustrate the issue of side effects when repairing model

inconsistencies, we reuse the simple example of a video on de-
mand (VOD) system from Egyed et al. [13] which is based on

a client-server architecture. This example consists of three di-

agrams modeled with the Unified Modeling Language (UML)

[51]. Figure 1 depicts the three UML diagrams of this system:

class diagram, sequence diagram, and state chart diagram.

The class diagram represents the structure of a movie

player. A User initiates the process of selecting and display-

ing a movie, a Display is used for visualizing movies and

receiving user input and a Streamer is used for decoding

movies. The sequence diagram describes the process of se-

lecting and playing a movie, while showing the interaction

between the instances of the classes User, Display, and
Streamer. Here a user starts by selecting a movie (i.e., call of

the operation select), and then the display starts streaming

the movie (i.e., call of the operation stream). The Streamer
object then sends frames to the Display instance via mes-

sage draw. The streaming of the movie can also be paused

with the message pause sent from Display to Streamer.
The state chart diagram finally shows the states of the class

Streamer in the VOD system, i.e., wait and stream.
Inconsistencies can be repaired if and only if they are

detected [55]. An established practice for detecting inconsis-

tencies is to express consistency rules on models, which are

the foundation to understand their failure, i.e., presence of

an inconsistency. The consistency rules can be specified with

the well-established standard Object Constraint Language

(OCL) [49]. For the sake of simplicity, let us give an informal

description of three structural consistency rules from the

UML specification [50]:

CR1 Every transition in a state chart diagram has to have

a corresponding message in a sequence diagram.
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(a) Class diagram.

(b) Sequence diagram.

(c) State chart diagram of the class Streamer.

Figure 1. Side effects in repairing model inconsistencies: An

example.

CR2 Every message in a sequence diagram has to have a

corresponding operation in the class diagram.

CR3 Every transition in a state chart diagram has to have

a corresponding operation in the class diagram.

These consistency rules ensure that there are no unde-

clared transitions and messages. After checking the above

consistency rules, two inconsistencies are detected, respec-

tively:

VI Violation I of CR1 Transition wait has no corre-

sponding message in lifeline s:Streamer.
VII Violation II of CR2 Message pause has no corre-

sponding operation in class Streamer.

Alternative repairs can be proposed for the two inconsis-

tencies VI and VII meeting different developers needs. For

instance, adding a message wait would repair VI. However,
among those possible repairs, some may have either posi-

tive or negative side effects. For example, to repair VI one

could rename the message pause to wait so that the tran-

sition wait has a corresponding message. This repairs VI
but, as a positive side effect, would also repair VII since now
all messages in the sequence diagram have corresponding

operations in the class Streamer.
Another possible repair of VI could be to rename the tran-

sition wait to pause, so that the transition would have a

corresponding message. This repair has an undesired neg-

ative side effect that causes a new inconsistency VIII (see

below) which must be repaired as well. This leads to a path

of two subsequent repairs, the first one fixing VI and the sec-
ond one fixing its negative side effect VIII. To make matters

worst, repairing VIII can in turn cause a negative side ef-

fect. For example, repairing VIII by renaming the transition

pause to wait would again cause the inconsistency VI. This
situation might then lead to a cycle of repairs that would be

continuously executed. The developer would be trapped in

a cycle that would repair VI and VIII where repairing one
causes the other. In such a simple case, cycles could be easily

handled. However, cycles of multiple repairs are an issue

in particular when the models are worked on by multiple

developers that are unaware of each others’ changes.

VIII Violation III of CR3 Transition pause has no cor-
responding operation in class Streamer.

The example depicted in Figure 1 already shows non trivial

side effects occurring with few simple consistency rules.

These phenomena are amplified the more consistency rules

are defined and the more inconsistencies are detected. In

particular, when consistency rules are interrelated where the

same model elements are used by multiple consistency rules,

e.g., the model element Transition in CR1 and CR3. This is
indeed very common in practice as was observed by Nöhrer

et al. [48]. There, it was found that relationships among the

consistency rules, and thus among inconsistencies, not only

exist but are common [48].

Therefore, it becomes crucial to not simply list repairs

but also to detect their side effects, paths, and cycles to bet-

ter support developers when repairing inconsistencies with

relevant feedback and guidance. This paper aims to fill this

gap.

3 Background
This section provides definitions and examples of the most

important terms for a prompt understanding of this paper.

Definition 1. A modelM consists of elements (e ∈ M) hav-
ing properties accessible with the dot (.) operator, e.g., "e .p".

Definition 2. A scope element is a model element and its
corresponding properties (e .p) accessed during the validation
of a consistency rule. A set of scope elements is called a scope.

Definition 3. A causei of an inconsistency (i) is all the scope
elements that violate the corresponding consistency rule. Hence,
a cause is a subset of a scope.

To detect inconsistencies, a given consistency rule is in-

stantiated for each model element as the context of the con-

sistency rules. For example, the consistency rule CR1 is in-
stantiated for every transition wait and stream in the state

machine diagram in Figure 1. We refer to such instances as

validation trees which are defined as follows.

Definition 4. A validation tree consists of a set of hierarchi-
cal ordered (tree-based) expressions and represents the Abstract
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CR 1: Transition[wait]

 m in s:Streamer.receivedMesagesƎ

= =

self.name[wait]

m.name[pause] m.name[stream]

self.name[wait]

False

Figure 2. Example of validation tree of the transition wait
for the Consistency rule CR1.

Syntax Tree of a consistency rule for a specific model element.
An expression consists of its operation (op) (e.g, logical AND
(∧), equals (=)), one or more children (children) which are also
expressions, exactly one parent expression (parent ) and values
to be validated (se2v).

e := ⟨op, children,parent , se2v⟩

An example of a validation tree is shown in Figure 2 on the

transition wait for the consistency rule CR1. Every validation
tree validates to a boolean value in its root expression. Only

those that validate to false are inconsistencies for which

repairs are computed, e.g., the case transition wait in Figure

2. Note that the instances returning true are ignored when

computing repairs but they are not removed because a repair

could affect them as a side effect. The validation trees are

used as a basis in the current approach to explore side effects.

This will further be explained in the next Section 4.

Definition 5. A repair action (ra) is a change to a model el-
ement property that resolves an inconsistency in part or full
(often multiple repair actions are needed to resolve an incon-
sistency). A repair action contains the model element (e), the
property (p) that is affected by the change, the type of change
(ch), and a value (v), which can be a model element v ∈ M,
or a primitive value v ∈ V. The following types of changes are
possible: ⊕ adds, ⊖ deletes, and ⊙ updates.

ra := ⟨e,p, ch,v⟩, ch ∈ {⊕, ⊖, ⊙},

Note that it might be necessary to change multiple scope

elements to fix an inconsistency. For that purpose, we define

a group of repair actions as follows.

Definition 6. A repair is a non empty collection of repair
actions that is guaranteed to fix an inconsistency (i).

⟨i ∈ I, ra ⊆ RAi ⟩

As repairs may have side effects, we define them as follows.

Definition 7. A repair with a positive side effect (pse) is a
repair that fixes more than one (≥ 2) inconsistency.

Definition 8. A repair with a negative side effect (nse) is a
repair that causes at least one (≥ 1) new inconsistency.

Note that a side effect can be caused by repairs from dif-

ferent inconsistencies. As repairing negative side effects can

cause side effects, we define a graph of side effects.

Definition 9. A side effect graph is a directed graph G =

(V ,E) where V is the set of all vertices and E the set of all
directed edges. Vertices represent repairs and edges represent
side effects (positive(+) or negative(-)) a repair has on another
inconsistency, and thus on its repairs. We define an edge as
the triple (v1,v2,+|−), where v1 is the source vertex, v2 is the
target vertex and +|− is the type of side effect (either positive
(+) or negative(−)). Figure 3 shows an example of a constructed
side effect graph.

Definition 10. A path of repairs causing negative side effects
is a sequence of consecutive edges ((v1,v2,−), (v2,v3,−), . . . ,
(vx ,vy ,−)) which only consists of edges with negative side ef-
fects (−). The start edge (v1,v2,−) and the end edge (vx ,vy ,−)
must not be the same ((v1,v2) , (vx ,vy ), no cycles allowed).

Definition 11. A cycle of repairs causing negative side effects
is a path ((v1,v2,−), . . . , (vx ,vy ,−)) where the start and end
edge is the same ((v1,v2) = (vx ,vy )).

3.1 How do we Detect Inconsistencies?
In the validation tree, the root expression is expected to

validate to true (i.e., consistent) and so its children expres-

sions. For example, in Figure 2 the ∃ and = expressions are

also expected to validate to true. If the root expression vali-

dates to false, then we detect an inconsistency. To compute

the validation result of a validation tree, we start from the

leafs (bottom) and start computing the validation result of

the subexpressions (parent nodes) and continue this process

until the root expression.

3.2 How do we Generate Repair Actions?
Before to compute the repairs, we first need to identify the

cause of an inconsistency. The cause is all scope elements that

are part of a violated expression, i.e., where validation result

differs from (,) expected result. The cause in the example of

Figure 2 is the transition wait, messages pause and stream
and the lifeline Streamer.To generate repair actions we
iterate over every scope element in the cause and look for

every violated expression were the scope element is used.

We then generate a repair action so that the direct violated

parent expression is validated.

4 Overall Approach
This section presents our approach that explores side effects

when repairing inconsistencies, before to focus on evaluating

it. First, it computes the repairs for the model inconsistencies.
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For that we use our previous work
1
. However, our current

approach is designed to utilize repairs computed by any of

the existing related approaches (in section VI). After that we

identify the side effects for each computed repair and we

explore the side effect recursively to identify paths and cycles

of repairs. Finally, we propose to rank the repairs based on

the gained side effect knowledge to better support developers

in deciding how to repair their model inconsistencies.

4.1 Identifying Positive and Negative Side Effects
As introduced in Section 3, the validation trees are instanti-

ations of consistency rules. Those that validate to false are

treated as inconsistencies for which repairs are computed.

For example, the instance of the consistency rule CR1 (from

section 2) on the transition wait validates to false since it

has no corresponding message. Whereas, the instance of the

consistency rule CR3 on the transition wait validates to true

since it has a corresponding operation.

Algorithm 1 presents our detection and exploration algo-

rithm of side effects. It first computes a finite set of repairs

for the inconsistencies, and then simulates on an internal

copy of the model each repair on its inconsistency (lines 2-4).

After that we monitor which other validation trees validate

to a different boolean value than before (lines 5-17). If so, a

side effect is detected and further investigated. Otherwise,

the repair is considered as a side effect free. Depending on

how the validation of an instance changes (from true to false
or from false to true), either a positive or a negative side effect
is detected (lines 4-8).

4.1.1 Positive Side Effects
In case the validation results of other validation trees change

from false to true (after simulating a given repair), this is

then identified as a positive side effect (lines 6-10). In the

example shown in section 2, repairing the inconsistency VI
by renaming the message pause to wait also repairs the

inconsistency VII. This repair is then listed as causing a

positive side effect along with its affected inconsistencies

(line 9).

4.1.2 Negative Side Effects
In case the validation results of other validation trees change

from true to false after simulating a given repair, this is then

identified as a negative side effect (lines 11-16). Again, on

the example shown in section 2, repairing the inconsistency

VI by renaming the message wait to pause also causes the

inconsistency VIII. This repair is then listed as causing a

negative side effect along with its affected inconsistencies

(line 14). Note that when a negative side effect is identified,

i.e., a new inconsistency is caused, we compute its repairs

and in turn we explore recursively their side effects (line

15). This is crucial in particular when exploring the negative

1
We omit references to comply with the double blind rules.

Algorithm 1 Side effect detection

1: function detectSideEffects(Set[Inconsistency] si)

2: sr← si.generateRepairs4AllInconsistencies()

3: for all repair ∈ sr do
4: simulate(repair)

5: for all vt ∈ AllOtherValidationTrees do
6: if (vt.preResult() = false

7: ∧ vt.Result() = true) then
8: ▷ It is a positive side effect
9: repair.pse← vt

10: end if
11: if (vt.preResult() = true

12: ∧ vt.Result() = false) then
13: ▷ It is a negative side effect
14: repair.nse← vt

15: DetectSideEffects(repair.nse)

16: end if
17: jGraphT.updateGraph(repair)

18: end for
19: end for
20: end function

side effects in depth and also identifying paths and cycles of

repairs that the developer might be trapped in.

4.2 Paths and Cycles Detection
Already while detecting the side effects for each repair, we

incrementally construct a graph that links the different re-

pairs from the different inconsistencies (line 17). The graph

consists of nodes that are repairs and edges linking repairs

pairwise. An edge can be of type positive side effect or of

type negative side effect, as defined in Definition 9. Figure

3 gives an excerpt example of a graph based on the incon-

sistencies and repairs from section 2. The first repair for the

inconsistency VI has a positive side effect on the repairs

for VII. Whereas the third repair for VI has a negative side

effect on the repairs for VIII which in turn has positive and

negative side effects on respectively VII and VI. Here, even
though a repair has several arrows to other repairs from the

same inconsistency, such as VI-R1 in Figure 3, we do not

count each edge as a different side effect. Instead we count

them as one side effect on the inconsistency, e.g., the repair

VI-R1 as one positive side effect on VII in Figure 3.

Note that we also represent the repairs for the negative

side effects, i.e., new inconsistencies that would arise after

the execution of a given repair (not present in the initial state

of the model). This can be seen as a projection of the future

states of the model after executing a given repair.

This graph now is used as a basis to detect paths and cycles

of repairs due to negative side effects. To do so, we use the

simple paths and cycles detection algorithms from the open

source library JGraphT (http://jgrapht.org/).
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VI -R1: 
Rename message 
pause to wait

VII -R1: 
Rename message 
pause to stream

VII -R2: 
Add operation 
pause()

VI -R2: 
Add message 
wait

VI -R3: 
Rename transition
wait to pause

VIII -R2: 
Rename transition 
pause to wait

VIII -R1: 
Add operation 
pause()

+

+

+

+

_

_

_
_

_

_
+

Positive side effectNegative side effect

Figure 3. Excerpt of graph construction of side effects for

the inconsistency VI in section 2.

4.3 Ranking the Repairs Based on Side Effect
Knowledge

In our approach, we further propose to sort the computed

repairs based on the gained knowledge of side effects. Simi-

lar idea was applied by Cuadrado et al. [10] and showed to

be useful. The rationale behind our ranking mechanism is:

i) to reduce the developer effort and time when repairing

inconsistencies by prioritizing repairs with positive side ef-

fects, ii) warn developers about the presence of negative side

effects, paths and cycles, and iii) guide developers in repair-

ing all inconsistencies, in particular repairing the negative

side effects. Thus, we propose to rank the repairs for each
inconsistency as the following:

1. The repairs with only positive side effects are prior-

itized. This category of repairs receive the priority

"very high". Note that herein the repairs are ranked

from those with the most positive side effects to the

least ones.

2. The repairs without side effects are then listed to the

developer. This category of repairs receive the priority

"high". We rank first the repairs with the least repair

actions (lowest effort) up to those with the most repair

actions (highest effort).

3. After that, we list the repairs that have both positive

and negative side effects. This category of repairs re-

ceive the priority "medium".We compute the difference

between the number of positive side effects and the

number of negative side effects (di f f = #pse − #nse).
Then we rank the repairs based on their di f f value

with a decreasing order (e.g., 10, 6, 2, -1, -3 ...). Thus,

prioritizing repairs which cause more positive than

negative side effects.

4. Finally, the repairs with only negative side effects

are the least prioritized. This category of repairs re-

ceive the priority "low". First, we rank repairs from

those with the least to the most number of negative

side effects. Second, we list the repairs that trigger a

path/cycle of negative side effects. We rank them from

the smallest (with the least number of repairs) to the

longest paths/cycles.

Repairs would thus be sorted and presented per inconsis-

tency for developers. An example of our ranking strategy on

the three repairs for the inconsistency VI in Figure 1 is as

follows:

▷ Inconsistency VI
#R1 Rename the message pause to wait – causes a posi-

tive side effect on VII.
#R2 Add a message wait – no side effects.

#R3 Rename the transition wait to pause – causes a neg-

ative side effect on VIII.

Note that in the end, only developers decide which repairs

to apply. Repairs with negative side effects can be useful as

well for developers. In that case, our approach ensures that

developers track the side effects and repairs them later on.

5 Evaluation
This section evaluates our approach performance, feasibility

and usefulness. Our evaluation consists of two parts.

At first, we assess the feasibility of our approach on 14

UML models (class, sequence, state chart, deployment, use

case diagrams) taken from three different sources: academia
(VOD), industry (eBullition, MVC, Micro, ATM, Course, Planner,
Dice3, Home, Robot, Vacation) and GitHub (Pro11, FullAdder,
ActMgr) [21]. The domains of the models range from control

of a micro wave oven and an inventory storage management

system to a Vacation and Sick Leave System. The model

sizes range from 284 to 4485 model elements (e.g., class,

lifeline, message, state, transitions, their properties, etc.).

To detect inconsistencies, we used 20 complex consistency

rules taken from the UML specification [50]. The number of

inconsistencies ranges from 7 to 78, and the number of all

repairs from 9 to 26682. Table 1 details our data set used in

the evaluation, i.e., the number of model elements, number of

inconsistencies, number of repairs, and their sources. Three

of these models are from GitHub and have two versions each,

where version one had inconsistencies that had been fixed in

version two by a developer. This further allows us to assess

the usefulness of our ranking strategy based on side effects,

i.e. whether the manually applied repairs by the developers

were among the prioritized ones with our ranking strategy

or with the least prioritized. The time performance was also

measured when detecting side effects in depth.

After that, we further assess with a controlled experiment

the influence of the side effects that are detected by our

approach on 24 participants divided in two groups. The first
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Table 1.Model information.

Model

Name

#Model

Ele-

ments

#Incon-

sisten-

cies

#Repairs Source

ActMgr 1185 7 9 GitHub

Pro11 284 7 18 GitHub

FullAdder 992 12 65 GitHub

Micro 2346 10 34 Industry

VOD 467 9 46 Academia

ATM 313 13 763 Industry

MVC 1410 58 3530 Industry

eBullition 1346 54 26682 Industry

Course 1620 42 318 Industry

Planner 868 17 73 Industry

Dice3 4485 71 131 Industry

Home 1882 60 578 Industry

Robot 1471 24 48 Industry

Vacation 1805 78 92 Industry

group receives side effect knowledge and ranked repairs

(with our ranking strategy in section 4.3), and the second

group not.

Note that our implementation has a compilation mod-

ule integrated to check the syntactical correctness of the

OCL consistency rules. The used dataset, consistency rules,

and constructed side effects graphs can be found on our

anonymized companion web page
2
.

5.1 Research Questions
We formulate the following research questions:

RQ1 Towhat extent do positive side effects occur? This aims

to investigate the frequency of positive side effects.

RQ2 To what extent do negative side effects occur? And

what are the path lengths of negative side effects that

occur recursively? This also aims to investigate the fre-

quency of negative side effects and their consequences.

RQ3 To what extent do cycles of repairs occur in our case

studies? What is the amount of repairs in a cycle? This

aims to investigate the frequency and nature of cycles.

RQ4 To what extent is our ranking strategy helpful for de-

velopers? This aims to assess the usefulness of our

ranking strategy w.r.t. to the likelihood of usefulness

to developers.

2
https://figshare.com/s/e2c8c67bc94583897786

Figure 4. Number of repairs that do have side effects and

that do not have side effects.

RQ5 How fast can we detect side effects, paths, and cycles?

This aims to assess the time performances and scala-

bility.

RQ6 To what extent does side effect knowledge influence

developers when repairing inconsistencies? This aims

to determine whether developers behave differently

when side effects knowledge is available and when it

is not. This also aims to further assess our approach’s

usefulness.

5.2 Results
We first report on the initialization phase. Detecting incon-

sistencies (i.e., creation of validation trees) took millisec-

onds per inconsistency. After computing repairs, we created

the side effects graphs, which took minutes to generate (<1

minute for VOD to 10 minutes for eBullition). Now we report

on the obtained results when tracking side effects in depth.

Figure 4 gives the number of repairs that do have side

effects and repairs without side effects. The amount of repairs

causing side effects varied from 2 (ActivityManager model)

to 145 (MVC model) resulting in a total of 398 repairs with

side effects in our case studies. Figure 5 further shows the

numbers of all side effects for each case study
3
. The number

of all side effects varied from 10 (ActivityManager model) to

7463 (MVC model) resulting in a total of 12166 side effects

caused by 398 repairs. It is worth noting from Figures 4 and

5 that only few repairs in each case study tend to result in a

large number of side effects. For example, in the MVC model

only 145 repairs resulted in 7463 side effects.

5.2.1 RQ1
The number of repairs causing positive side effects varied

from 2 (ActivityManager model) to 145 (MVC model) in our

case studies, as shown in Figure 6. Figure 7 further shows

the number of identified positive side effects in all case stud-

ies. The number of positive side effects varied from 4 (VOD
model) to 7460 (MVC model). Moreover, columns 2 and 3 of

3
The number of side effects refers to the number of validation trees that

are affected by a given repair, and not the graph edges.
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Figure 5. Number of all caused side effects.

Figure 6. Number of repairs causing positive and negative

side effects.

Figure 7. Ratio of positive and negative side effects.

Table 2 gives the minimum and maximum number of posi-

tive side effects caused by a single repair in each case study,

which was a minimum of 1 (MVC model) and a maximum of

74 (Vacation model). This shows that positive side effects are

frequent and could benefit developers, in reducing time and

effort, if they would be prioritized over the rest of repairs.

5.2.2 RQ2
The number of repairs that caused negative side effects var-

ied from 1 (MVC model) to 27 (FullAdder model) in our case

studies, as shown in Figure 6. Among our case studies the

eight models ActivityManager, Pro11, Micro, Course, Plan-
ner, Dice3, Home, Vacation did not have negative side effects.

Figure 8. Cycles of negative side effects per case study.

Among the rest of the case studies, the number of the identi-

fied negative side effects varied from 3 (MVC model) to 199

(eBullitionmodel), as shown in Figure 7.We also observed the

number of negative side effects caused by a single repair in

each case study which was a minimum of 1 (e.g., ATM model)

and a maximum of 32 (eBullitionmodel), as in columns 4 and

5 in Table 2.

Moreover, for each negative side effect we computed their

repairs and explored their side effects recursively. Some re-

pairs in turn resulted in negative side effects themselves, and

thus resulting in a path of successive repairs. The minimum

and maximum path length of negative side effects were re-

spectively 1 and 8 (VOD model), as shown in columns 6 and 7

in Table 2. This confirms that successive negative side effects

occur in practice and thus it is crucial to highlight them to

developers.

It is worth noting that we encountered repairs that caused

both positive and negative side effects. In particular, MVC,
FullAdder, VOD, and ATM respectively had one, two, two,

and three repairs with both positive and negative side effects.

5.2.3 RQ3
In addition to the identified paths of negative side effects, we

detected 151 cycles in total varying from 3 (eBullition model)

to 70 (VOD model), as shown in Figure 8. Similarly with the

path length of negative side effects, we calculated the length

of cycles which varied from 2 (minimum possible length of a

cycle) to 6 (VOD model) repairs included in a cycle, as shown

in columns 8 and 9 in Table 2. The results confirm that cycles

are frequent, and hence, it is essential to detect them so that

developers would not be trapped in them.

5.2.4 RQ4
To investigate the usefulness of our ranking strategy, we

applied it to three versioned models (ActMgr, Pro11, and
FullAdder) retrieved from GitHub. Every model contains

inconsistencies in version 1 that the developer had manually

fixed in version 2 (since the inconsistencies are not present

anymore).We were able to extract the repairs performed by

the developers. We thus could investigate if our approach

would have prioritized those repairs with a high ranking.
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Table 2. Number of positive/negative side effects per repair, length of paths and cycles, and time performances.

1) Case

studies

2) Max number

of positive

side effects

per repair

3) Min number

of positive

side effects

per repair

4) Max number

of negative

side effects

per repair

5) Min number

of negative

side effects

per repair

6) Max path

length of

negative

side effects

7) Min path

length of

negative

side effects

8) Max

cycle

length

9) Min

cycle

length

10) Time

detection

of paths

/cycle [ms]

ActMgr 6 4 n/a n/a n/a n/a n/a n/a n/a

Pro11 6 5 n/a n/a n/a n/a n/a n/a n/a

FullAdder 7 6 7 1 5 1 4 2 1 ms

Micro 9 6 n/a n/a n/a n/a n/a n/a n/a

VOD 2 2 3 1 8 1 6 2 3,9 ms

ATM 11 11 6 1 6 1 4 2 2,1 ms

MVC 54 1 3 3 1 1 0 0 0,3 ms

eBullition 30 16 32 1 4 1 2 2 64 ms

Course 34 20 n/a n/a n/a n/a n/a n/a n/a

Planner 17 9 n/a n/a n/a n/a n/a n/a n/a

Dice3 64 44 n/a n/a n/a n/a n/a n/a n/a

Home 56 31 n/a n/a n/a n/a n/a n/a n/a

Robot 19 16 16 1 2 1 0 0 4,5 ms

Vacation 74 44 n/a n/a n/a n/a n/a n/a n/a

We found that the applied repairs in ActMgr, Pro11, and
FullAdder were all ranked in both the categories very high
(with only positive side effects) and high (without side ef-

fects). In particular, 1) in ActMgr two repairs were applied

where one caused positive side effects and one without side

effects, 2) in Pro11 three repairs without side effects were

applied (herein not all inconsistencies were repaired in the

second version), and 3) in FullAdder three repairs were ap-

plied where two caused positive side effects (category high)
and one without side effects. This shows that all three de-

velopers applied only repairs with positive side effects and

without side effects. Our ranking strategy thus would have

met the developers needs by indeed prioritizing the manu-

ally applied repairs among all computed alternative repairs

in our three versioned models. This shows evidence of the

usefulness of our performed ranking. However, for statisti-

cal evidence, more versioned models are needed for further

evaluation.

5.2.5 RQ5
During evaluation we recorded time performances

4
while

detecting side effects, paths, and cycles. We ran our eval-

uation on a desktop PC with an intel core i7-6700 3.4GHz

4
Not including the initialization phase, i.e., after generating the validation

trees, repairs and side effects graphs (10min for the largest model). Nonethe-

less, the whole process of detecting inconsistencies, computing repairs with

their side effects, summed together, remains a matter of couple of minutes

for the largest models.

Processor and 32GB of RAM on Windows 10. Each side ef-

fect took us less than 0,1 milliseconds to detect, even in the

biggest models. As shown in column 10 of Table 2, detecting

the paths and cycles due to successive negative side effects

took us less than 65 milliseconds in the worst case. Hence,

showing that our approach scales on large models with a

large number of repairs and side effects.

5.3 RQ6 – Controlled Experiment
In RQ4 we saw that the side effect knowledge showed to

be useful in prioritizing the repairs that developers actually

applied manually. However, that does not investigate the

influence of side effects on developers when repairing incon-

sistencies. To gain more evidence we conducted a controlled

experiment.

5.3.1 Experiment Set Up
Subjects selection. The controlled experiment was run

with 24 participants (8 females and 16 males), all master

students in computer science at JKU university. All partici-

pants had knowledge in the field of modeling and consistency

checking. Five had no professional programming experience

and 19 had between 1 and 14 years of programming experi-

ence. Overall, they had an average of 2 years and 4 months

of experience as developers.

Experiment Design. Our participants were randomly

assigned to a control and an experimental groups of 12 each.

Hence, alleviating the threat of having all best participants in

one group. Then, we checked that both groups were balanced
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Table 3.Mean time spent to repair the inconsistencies.

Groups Repair Time Difference

With side effect knowledge 13 min 40 sec

1 min 55 sec

Without side effect knowledge 15 min 35 sec

w.r.t. to: i) professional programming experience, which was

respectively 2.2 and 2.6 years, and ii) modeling experience

which was respectively 2.4 and 2.5 years.

Experiment Task. We used a medium sized UML model

consisting of Class, Sequence, and State chart diagrams, fit-

ting for the limited time allocated for the experiment. This

model is simple and similar to the VOD, yet exhibiting con-

structions present in our industry models. Each of the 24

participants had to repair a set of six inconsistencies from

the three consistency rules shown in Section 2. Those in-

consistencies are realistic as they occurred in our models

from industry and their consistency rules are from the UML

specification [50]. For each inconsistency, a set of repairs

was provided (a minimum of 8 repairs and a maximum of

14 repairs) from which one had to be chosen. A total of 68

repairs is given for the six inconsistencies. Among the 68

repairs, 12 have positive side effects, 24 have negative side

effects, and 32 have no side effects. Thus, for the 24 partici-

pants and six inconsistencies, we had to analyze 144 chosen

repairs. The experimental group had side effect knowledge

with ranked repairs (as described in section 4.3). The control

group had not. The experiment thus set the initial condition

to explore whether side effect knowledge can make a differ-

ence when repairing inconsistencies. At the end we gave a

questionnaire about the complexity of tasks, and feedback

on usefulness.

Variables. The experiment was aiming to measure the

influence on subjects resolving inconsistencies when side

effect knowledge was provided in contrast to when it was

not. This was the independent variable we controlled, i.e.,

presence or not of side effects knowledge. To measure its

effect, we observed two dependent variables, namely: the time
developers took to repair the inconsistencies and the types
of the chosen repairs, i.e., repairs with positive side effects,

without side effects, and with negative side effects.

5.3.2 Experiment Results
We first checked for normality using the Shapiro-Wilk test

[58]. The recorded times passed the normality test. Table 3

shows the recorded mean time it took developers from both

groups to repair all given inconsistencies. We observed that

developers with side effect knowledge performed faster than

those without, with a difference of roughly 2 minutes, i.e.,

12.3% faster. This shows that relying on side effect knowl-

edge seems to accelerate the decision time when repairing

inconsistencies.

Moreover, from the 144 selected repairs we analyzed the

number of repairs for the three categories, namely: with pos-

itive, with negative, and without side effects, as shown in

Figure 9. On the one hand, developers with side effect knowl-

edge favored 30 repairs with positive side effects and only

selected 8 repairs with negative side effects, but repaired the

new inconsistencies afterward. All of the 12 developers here

applied at least 2 (and some applied at most 4) repairs with

positive side effects. Only eight developers knowingly ap-

plied exactly 1 repair with negative side effects. On the other

hand, developers without side effect knowledge chose only 4

repairs with positive side effects and selected 30 repairs with

negative side effects, but did not repair the new inconsisten-

cies since they were not even aware of them. Here all of the

12 developers applied at least 2 (and some applied at most

3) repairs with negative side effects. Only two developers

unknowingly applied exactly 2 repairs with positive side

effects. The number of repairs without side effect was rela-

tively the same in both groups (34 vs 38). We also checked

the position of the selected repairs. We observed that they

were from different positions, and were not simply in the

first or second position, which indicate a non-random choice

of repairs. These results highlight the significant benefit and

influence of side effect knowledge to developers, where the

number of repairs with positive and negative side effects are

proportionally inversed in both groups.

We further gave a questionnaire to the participants. Let

us highlight the main observations. In the group that did not

have side effect knowledge, (to the question ’Did you con-
sider side effects when repairing the inconsistencies?’) seven
out of the 12 developers answered that they have considered

possible side effects when selecting a repair. However, as

shown in Figure 9, they nonetheless applied few repairs with

positive side effects and many repairs with negative side ef-

fects. They failed in correctly tracking side effects, and hence,

this emphasizes the necessity of an automatic detection and

tracking approach of side effects. In the other group that did

have side effect knowledge, (to the question ’How useful was
the ranking of repairs based on side effect knowledge to choose
a repair?’5) six out of the 12 developers graded our ranking

strategy as ’useful’, four graded it as ’very useful’, and two

graded it as ’extremely useful’. This further emphasizes the

usefulness (discussed in RQ4) of ranking repairs based on

side effect knowledge to developers. From our controlled

experiment, we can conclude that the knowledge of side

effects seems to positively influence the way developers re-

pairs their inconsistencies, in both time and type of chosen
repairs.

5.4 Threats to Validity
In this section we discuss internal, external and conclusion

threats to validity according to Wohlin et. al. [65].

5
Between ’useless – little useful– useful– very useful– extremely useful’.
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Figure 9. Number of selected repairs with positive, negative

and without side effects in both groups.

5.4.1 Internal Validity
In our evaluation, the internal threats to validity are centered

on the used consistency rules and the amount of repairs.

The number of detected side effects depends on the used

consistency rules and to what extent they are interrelated.

We provided our used consistency rules for reproducibility

purposes. The number of side effects also depends on the

number of considered repairs. However, considering more

repairs would only increase the number of side effects, and

not the opposite. In this paper, we aimed to show that side

effects are frequent and that we are able to efficiently ex-

plore them in depth. This threat is acceptable here. Moreover,

our approach depends on the validation trees which are in-

stances of OCL consistency rules specified by the user. We

only check their syntactic correctness, but not their semantic

correctness/completeness since only the user knows its in-

tent. This might affect the detection of side effects. However,

we took our consistency rules from the UML specification

[50]. In addition, by systematically simulating each repair

and monitoring how the results of validation trees changes,

we ensure the detection of all existing side effects.

5.4.2 External Validity
We implemented and evaluated our approach on UML/OCL

and our previous work of repair computation.We cannot gen-

eralize our results to other modeling/constraint languages

and other approaches of repair computation. However, the

only requirement to reuse our approach is to have access

to instances of consistency rules with an equivalence to the

validation trees. Other constraint languages than OCL can

be used. Moreover, as existing approaches computes similar

repairs to ours (see definition 5). Reusing our detection algo-

rithms of side effects, paths/cycles, and the ranking heuristic

would be equally good as in the current approach. Nonethe-

less, further experimentation is necessary. In our experiment,

we selected master students as participants. Recent studies

[56, 61] showed that students can be valid and well repre-

sentative subjects for experiments and development tasks.

Nonetheless, to further reduce this threat, we selected master

students in their final year. They had an average of 2 Years

and 4 months professional programming experience, which

is near to a junior developer experience.

5.4.3 Conclusion Validity
Our evaluation gave promising results (quantitatively and

qualitatively), demonstrating that our detection algorithms

of side effects and paths/cycles is very fast and efficiently

explores repairs’ side effects. The evaluation results also

showed evidence that our ranking strategy showed to be

useful in prioritizing the developers applied repairs. These

results are further emphasized by our controlled experiment

that showed the benefit in giving side effect knowledge to

developers. However, we only evaluated on 14 models (3

versioned ones) with a total of 32387 repairs in all our case

studies, and only 24 students in our experiment. To have

more statistical evidence, we plan to evaluate on more (ver-

sioned) models and reproduce our experiment with more

participants.

6 Related Work
This section focuses on works most related to the topic of

detecting and repairing model inconsistencies and exploring

side effect. Many approaches proposed to co-evolve mod-

els [7, 16, 23, 28, 29, 63], constraints [2, 8, 32, 35, 40], and

model transformations [17, 18, 27, 36, 37, 41]. However, co-

evolution approaches repair a particular type of inconsisten-

cies w.r.t. metamodels conformance [19, 20]. Here we focus

on model repair. All existing approaches to detect inconsis-

tencies use various techniques. Briand et al. [3] proposed an

approach to check UML consistency and by applying an im-

pact analysis to identify consistencies in UML models. Konig

et al. [39] proposed an algorithm for consistency checking on

inter-relatedmodels to reduce cost of inconsistency detection

due to model merging. There is also approaches that relies

on formal methods to detect inconsistencies (e.g., [4, 30, 59]).

However, those approaches do not propose repairs.

Nentwich et al. [47] provided an incremental approach

for checking the consistency of distributed heterogeneous

documents including models. They presented a method for

generating repairs from the consistency rules. Xiong et al.

[66] presented an approach that detects inconsistencies and

allows users to predefine repair actions associated with each

consistency rule. The consistency rules are defined with their

proposed language Beanbag that defines a consistency rela-

tion between model elements similarly as in OCL. Kolovos

et al. [38] proposed to address inconsistencies across het-

erogeneous models and provide repair strategies for those

constraints. They established a classification of the differ-

ent types of relationships that exist between heterogeneous

models and to identify the types of inconsistencies each rela-

tionship suffers from. Da Silva et al. [11] propose to compute
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repairs to resolve inconsistencies in their UML models. How-

ever, valid repairs that do have side effects are filtered. We

argue that all valid repairs must be considered and side ef-

fects of a chosen repair by the developer should be repaired

incrementally. Thus, guiding the engineer until the models

are consistent once again. Hegedues et al. [22] defined in a

graphical notation consistency rules and uses a Constraint

Satisfaction Problem solver to suggest repairs for inconsis-

tencies for Domain Specific Modeling Languages. Egyed et

al. [14] proposed an automated approach for detecting and

tracking inconsistencies in design models in real time. They

do this by observing the behavior of consistency rules to

understand how they are affected by model changes. Reder

et al. [54] proposed an incremental consistency checking

approach. Reder et al. [53] further generate repairs for in-

consistencies while pinpointing exactly which parts of an

inconsistency must be repaired. Macedo et al. [45] rely on

Alloy [26] to generate minimal repairs for inter-related mod-

els. Puissant et al. [52] proposed a planning technique to

generate repair plans for inconsistencies while aiming at a

fast computation of repairs without assessing the relevance

of the repair plans. Taentzer et al. [62] proposed to repair

inconsistent models w.r.t. their metamodels. They do not

explore all possible repairs by relying on the model change

history which helps in reducing the amount of repairs.

Although, the above existing approaches [22, 38, 45, 47,

52, 53, 62, 66] provide repairs to developers, no approach

proposed to explore in depth the side effects of the computed

model repairs, as it is achieved in this paper. Briand et al. [3],

used the term of side effect. However, only in the sense of

identifying inconsistencies caused by model changes. Reder

et al. [53] identify positive side effects by computing the in-

tersection between repairs of different inconsistencies. How-

ever, they did not explore negative side effects. To the best of

our knowledge, no related work in model repair addressed

explicitly and completely the issue of exploring side effects

in depth and detecting paths and cycles. Developers are left

with the burden of understanding and tracking the repairs

consequences (what side-effects? where? which impacted

elements?) without even being aware of them.

However, existing works on repairing programs and trans-

formations do explore side effects. Muslu et al. [46] proposed

to detect consequences of the code quick fixes but without

exploring paths and cycles. Steimann et al. [60] proposed to

repair malformd programs. They explored the consequences

(side effects) of the repairs successively, i.e., compute in ad-

vance paths of repairs. However, they do not explore nor de-

tect the cycles of repairs. Both Muslu et al. [46] and Steimann

et al. [60] also do not rank the repairs as we do in this paper.

Cuadrado et al. [9] proposed to compute quick fixes for ATL

transformations. They also proposed in [10] to detect pos-

itive and negative side effects for each quick fix. The main

difference with our work is they do not explore negative side

effect in depth and do not detect paths and cycles. Moreover,

they further rank the quick fixes in a similar way as our

strategy, but without distinguishing fixes with negative side

effects that lead to paths and cycles from those that do not. To

the best our of knowledge all existing approaches of model

repair compute repairs without knowing their side effects

and without ranking them w.r.t the likelihood of usefulness

to developers, as we do in this work.

7 Conclusion
In this paper, we presented an approach for detecting and

tracking positive and negative side effects. Then, based on the

successive negative side effects, we detect paths and cycles

of repairs to better guide and support developers in repairing

model inconsistencies. Finally, we rank the repairs w.r.t. their

usefulness to developers. Ultimately, to guide developers for

a more efficient repairing process of inconsistencies.

In our evaluation, we applied 20 consistency rules to 14

models. The results show that side effects not only exist but

they tend to be frequent. In our case studies, 398 repairs

caused 12166 side effects and 151 cycles in total. Further-

more, to check the usefulness of our ranking strategy, we

used 3 versioned models retrieved from GitHub and found

that the repairs manually applied by the developers were

indeed among the highest prioritized. Thus showing the

usefulness of our ranking strategy. A conducted controlled

experiment highlighted the significant influence and useful

value of providing developers with side effect knowledge

and ranking repairs based on it. Developers with side effect

knowledge preferred far more repairs with positive side ef-

fects (30 vs 4) and far less with negative side effects (8 vs

30) in contrast to developers without side effect knowledge.

While they also required less effort and time to repair the

given inconsistencies (12.3% faster).

For future work, we plan to propose heuristics that would

break cycles. We also plan to propose other alternative rank-

ing strategies that would meet different developers needs.

Finally, we plan to investigate propagation-based repair of in-

consistencies. With our detection approaches [31, 33, 34] of

the models changes causing inconsistencies, we could prop-

agate them to compute relevant repairs only. For example, it

would allow us to not compute undo repairs.
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